logo
banner

Journals & Publications

Journals Publications Papers

Papers

Event-Triggered Optimal Control for Partially Unknown Constrained-Input Systems via Adaptive Dynamic Programming
Jul 18, 2017Author:
PrintText Size A A

Title: Event-Triggered Optimal Control for Partially Unknown Constrained-Input Systems via Adaptive Dynamic Programming

 Authors: Zhu, YH; Zhao, DB; He, HB; Ji, JH

 Author Full Names: Zhu, Yuanheng; Zhao, Dongbin; He, Haibo; Ji, Junhong

 Source: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 64 (5):4101-4109; 10.1109/TIE.2016.2597763 MAY 2017

 Language: English

 Abstract: Event-triggered control has been an effective tool in dealing with problems with finite communication and computation resources. In this paper, we design an event-triggered control for nonlinear constrained-input continuous-time systems based on the optimal policy. Constraints on controls are handled using a bounded function. To learn the optimal solution with partially unknown dynamics, an online adaptive dynamic programming algorithm is proposed. The identifier network, the critic network, and the actor network are employed to approximate the unknown drift dynamics, the optimal value, and the optimal policy, respectively. The identifier is tuned based on online data, which further trains the critic and actor at triggering instants. A concurrent learning technique repeatedly uses past data to train the critic. Stability of the closed-loop system, and convergence of neural networks to the optimal solutions are proved by Lyapunov analysis. In the end, the algorithm is applied to the overhead crane system to observe the performance. The event-triggered optimal controller with constraints stabilizes the system and consumes much less sampling times.

 ISSN: 0278-0046

 eISSN: 1557-9948

 IDS Number: ES6QM

 Unique ID: WOS:000399674000064

*Click Here to View Full Record